
Watson–Crick palindromes in DNA computing

Lila Kari Æ Kalpana Mahalingam

Published online: 20 May 2009
� Springer Science+Business Media B.V. 2009

Abstract This paper provides an overview of existing approaches to encoding infor-

mation on DNA strands for biocomputing, with a focus on the notion of Watson–Crick

(WK) palindromes. We obtain a closed form for, as well as several properties of WK

palindromes: The set of WK-palindromes is dense, context-free, but not regular, and is in

general not closed under catenation and insertion. We obtain some properties that link the

WK palindromes to classical notions such as that of primitive words. For example we show

that the set of WK-palindromic words that cannot be written as the product of two non-

empty WK-palindromes equals the set of primitive WK-palindromes. We also investigate

various simultaneous Watson–Crick conjugate equations of words and show that the

equations have, in most cases, only Watson–Crick palindromic solutions. Our results hold

for more general functions, such as arbitrary morphic and antimorphic involutions.

Keywords Theoretical DNA computing � DNA encodings � Combinatorics of words �
Palindromes � Watson–Crick palindromes

1 Introduction

Theoretical DNA Computing is an area of biomolecular computing that loosely encom-

passes contributions to fundamental research in computer science originated in or moti-

vated by research in DNA computing. Examples are numerous and they include theoretical

aspects of self-assembly (Adleman 2000; Soloveichik and Winfree 2006), DNA sequence

design (Garzon et al. 2006; Marathe et al. 1999), and mathematical properties of

L. Kari (&) � K. Mahalingam
Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada
e-mail: lila@csd.uwo.ca

Present Address:
K. Mahalingam
Department of Mathematics, Indian Institute of Technology, Chennai 600035, India
e-mail: kmahalingam@iitm.ac.in

123

Nat Comput (2010) 9:297–316
DOI 10.1007/s11047-009-9131-2

DNA-encoded information (Domaratzki 2006; Daley and McQuillan 2006). One of the

most active areas of research in theoretical DNA computing is the search for ways to

encode information on DNA for the purposes of biocomputation that ensure that no

unwanted bindings occur. The main premise is that information-encoding strings that are

used in DNA computing experiments have an important property that differentiates them

from their electronic computing counterparts. This property is the Watson–Crick com-

plementarity between DNA single-strands that allows information-encoding strands to

potentially interact.

Recall that a DNA single-strand consists of four different types of units called nucle-
otides or bases strung together by an oriented backbone like beads on a wire. The bases are

Adenine (A), Guanine (G), Cytosine (C) and Thymine (T), and A can chemically bind to an

opposing T on another single strand, while C can similarly bind to G. Bases that can thus

bind are called Watson–Crick (WK) complementary. A DNA single strand is assigned its

direction based on what is found at the end of the strand: it can have the direction 50 ? 30

or 30 ? 50. Two DNA single strands with opposite orientation (one of them 50 ? 30 and

the other 30 ? 50) and with WK complementary bases at each position can bind to each

other to form a DNA double strand in a process called base-pairing, annealing, or

hybridization. Note that in this paper we omit writing the orientation of a DNA strand by

using the convention that any DNA sequence will represent a single strand in its 50 ? 30

orientation. It is now apparent that, when encoding information on single DNA strands,

care must be taken that the strands do not interact in undesirable ways. One such situation

can occur, for example, if a DNA strand has its first half WK complementary to its second

half. In this case, the DNA strand will bind to itself forming a secondary structure called a

hairpin (Fig. 1). This further implies that the information encoded on this hairpin will be de

facto unavailable for future biocomputational steps. Such secondary structures have to be

thus avoided by carefully designing the information-encoding DNA strands.

This paper aims to give an overview of the existing research into ways to optimally

encode information on DNA single-strands for the purposes of DNA computing, followed

by a focus on the specific concept of Watson–Crick palindromes and their theoretical

properties. The paper is organized as follows.

Section 2 discusses existing approaches to the problem of finding good DNA encodings

for biocomputations. The remainder of the paper investigates in depth a specific type of

interaction that has to be avoided in DNA computing, namely that between Watson–Crick

palindromes.

Section 3 describes basic properties of h-palindromes, where h is an antimorphic

involution modelling the Watson–Crick complementarity relation. For an antimorphic

involution, Lemma 4 gives a closed form for any h-palindrome w, as being w = p(qp)i,

where p, q are both h-palindromes.

In Sect. 4 we show, Proposition 6, that both the set of all palindromic words and the set

of all non-palindromic words are dense for an antimorphic involution h, providing thus a

rich choice for biocomputational purposes. In fact, Lemma 11 gives the number of

WK-palindromes of length 2k, which is precisely 4k. We also show that, for an antimorphic

involution, the set of all h-palindromes is not regular, Lemma 9, but context-free,

GC T AT C
GAT AGC A

C C
A
T

AC C T

G
C

A
TGAC

CTG

Fig. 1 Intramolecular
hybridization: DNA secondary
structure avoided in a hairpin-
free language

298 L. Kari, K. Mahalingam

123

Proposition 7. In the case of a morphic involution the situation is different. Indeed, Lemma

10 shows that if h(a) = a for any a 2 R; then the set of h-palindromes contains only the

empty word.

Section 5 solves several simultaneous WK-conjugate word equations. In most cases the

solutions to these equations are h-palindromes.

Section 6 discusses various closure and other properties of h-palindromes, interesting

for biocomputational purposes. For an antimorphic involution, in general, the set of

h-palindromes is not closed under concatenation, Lemma 13, or insertion Lemma 15.

Lemma 19 provides a connection between h-palindromes, h-commutativity, and primitive

words: For an antimorphic involution, u h-commutes with v iff both v and primitive root of

v can be written as product of two nonempty palindromes. Finally, Corollary 6 shows that

for an antimorphic involution, the set of h-palindromic words that cannot be written as the

product of two nonempty h-palindromes equals the set of primitive h-palindromes.

Section 7 points to future work in this area.

2 DNA encodings for biocomputation

Most DNA-based computations consist of three basic stages. The first is encoding the input

data using single- or double-stranded DNA molecules, the second is performing the bio-
computation using bio-operations and the third is decoding the result. One of the main

problems associated with such biocomputations is the design of the information-encoding

oligonucleotides (short DNA strands, 6–20 bases each) such that undesirable pairing due to

the Watson–Crick complementarity is minimized. Indeed, in laboratory biocomputing

experiments, the complementarity of the bases may pose potential problems, for example if

some DNA strands partially bind other DNA strands that are not their complete comple-

ments. Several approaches exist that address this sequence design problem. In this section

we briefly discuss the software simulation approach, the algorithmic approach and the

theoretical approach to the design of optimal data-encoding DNA strands.

The first approach, software simulation tools, verifies biocomputation protocol cor-

rectness before it is carried out in a laboratory experiment. Several software packages

(Hartemink and Gifford 1999; Hartemik et al. 1999; Feldkamp et al. 2000, 2001) written

for DNA computing purposes are available. For example the simulation software Edna
simulates biochemical processes and reactions that can occur during a laboratory experi-

ment. Edna (Garzon and Oehman 2001) is a simulation tool that uses a cluster of PCs and

demonstrates the processes that could happen in test tubes. Edna can be used to determine

if a particular choice of encoding strategy is appropriate, to test a proposed protocol and

estimate its performance and reliability, and even to help assess the complexity of the

protocols. Test tube operations are assigned a cost that takes into account many of the

reaction conditions. The measure of complexity used by Edna is the sum of the costs added

up over all operations in a protocol. Other features offered by the software allow the

prediction of DNA melting temperature (the temperature at which a DNA double strand

dissociates into single strands) taking into account various reaction conditions. All

molecular interactions simulated by the software are local and reflect the randomness

inherent in biomolecular processes.

The second approach to finding optimal DNA encodings is the algorithmic method. In

most DNA based computations there is an assumption that a strand will bind only to its

perfect Watson–Crick complement. For example, the results of DNA computations are

retrieved from test tubes by using strands that are complementary to the ones used in the

Watson–Crick palindromes in DNA computing 299

123

biocomputation. However, in practice it is possible for a DNA molecule to bind to another

molecule which differs from its complementary molecule by a few nucleotides, simply by

virtue of the strength of the bond between the remaining ‘‘perfect-match’’ complementary

bases. One way to avoid this is to ensure that every two molecules in the solution differ in

more than d locations, where d is a number that is determined by experimental observa-

tions. This property can be formalized in terms of the Hamming distance between two

DNA strands modelled as two strings w1 and w2 over the DNA alphabet {A, C, G, T}. The

Hamming distance between two strings w1 and w2 of equal length is denoted by H(w1, w2)

and is defined as the number of locations in which two given words w1 and w2 are distinct.

For a set of DNA words, the Hamming distance constraint requires that any two words w1

and w2 in the set have H(w1, w2) C d, where d is a given positive number. The second

constraint that is usually imposed is that for any two words w1, w2 in the solution, we have

H(w1, WK(w2)) C d, where for a word w, WK(w) denotes its Watson–Crick complement.

This constraint is necessary to ensure, for example, that retrieving the output of a bio-

computation (usually done by hybridizing it with WK complement of parts of the expected

output strand) proceeds error-free. Another consideration is that, when retrieving the

results from the solution, hybridization should occur simultaneously for all molecules in

the solution. This implies that respective melting temperatures should be comparable for

all hybridization reactions that are taking place. This is the third main constraint that the set

of words under consideration needs to adhere to.

To address the design of DNA code words according to these three constraints, an

algorithm based on a stochastic local search method was proposed in Tulpan et al. (2003).

The melting temperature constraint was simplified to the constraint requiring that the

percentage of C and G nucleotides in each strand be 50%. The algorithm produces a set of

DNA sequences that satisfies the Hamming distance and the temperature constraints:

Input: Number k of words to be produced and the word length n.

Step 1: Produce a random set of k words of length n each.

Step 2: Modify the set so that the set satisfies the first constraint.
Step 3: Repeat Step 2 for all the given constraints.

Output: The set of words (if one can be found).

More specifically, given the current word set, two words w1 and w2 are chosen from the

set that violate at least one of the constraints. With a probability 1 - c, c being the noise

parameter, one of these words is altered by randomly substituting one base in a way that

maximally decreases the number of conflict violations. The algorithm terminates either

when there are no more conflicts in the set of words, or when the number of loop iterations

has exceeded some maximum threshold. Empirical results prove this technique to be

effective and the noise parameter c is empirically determined to be optimal as 0.2,

regardless of the problem instance.

The third approach to the problem of designing DNA code words is the formal language
theoretical approach introduced by Kari et al. in Hussini et al. (2003). (For an introduction

to formal language theory the reader is referred to Hopcroft et al. 2001, and for combi-

natorics of words to Lothaire 1997, Shyr 2001.) Every biomolecular protocol involving

DNA generates molecules whose sequences of nucleotides form a language over the four

letter alphabet D = {A, G, C, T}. The Watson–Crick complementarity of the nucleotides

can be formalized by an involution mapping h, A 7!T and G 7!C which is an antimor-

phism on D*. An involution h is a mapping such that h2 is identity. An antimorphism h is

such that h(uv) = h(v)h(u) for all words u, v from D*. As Watson–Crick bonds are

300 L. Kari, K. Mahalingam

123

generally undesirable from a biocomputational perspective, they can be avoided for a given

language, if the language satisfies certain properties, as described below.

There are two types of unwanted hybridizations: intramolecular and intermolecular. The

intramolecular hybridization happens when two sequences, one being the reverse com-

plement of the other appear within the same DNA strand (Fig. 1). In this case the DNA

strand forms a hairpin. A language is called hairpin-free if its words cannot form such

hairpin structures. Hairpin-free languages have been defined (Kari et al. 2005a) and

studied, for example, in Kari et al. (2005a) and Domaratzki (2006).

Before introducing the formal definitions, we review some basic notations. An alphabet

is a finite, non-empty set of symbols. Let R be such an alphabet. Then R* denotes the set of

all words over this alphabet, including the empty word k. R? is the set of all non-empty

words over R. The length of a word u 2 R� is denoted by |u|, and Ri denotes the set of all

words over R of length i. A language L over R is a subset of R*. We denote by Subk(L), the

set of all subwords of length k of words from a language L.

Suppose now that we want to avoid the type of hybridization shown in Fig. 1 between

all the words of a given language L. We can achieve that by imposing the condition that L
be a WK-k-m-subword code, where WK is the Watson–Crick complementarity function

over the DNA alphabet D. A language L is called (Jonoska et al. 2005) a h-k-m-subword
code if for all words u 2 Rk we have R�uRihðuÞR� \ L ¼ ;; 1 B i B m. This means that no

word in a h-k-m-subword code contains two complementary subwords of length k that are

at most m bases apart. This further implies that, for example, in a DNA language with this

property no unwanted secondary structures such as hairpins with stems that are k bases

long and with loops that are up to m bases in length, can form.

DNA strand sets that avoid all types of unwanted intermolecular bindings (Fig. 2) were

introduced in Jonoska et al. (2005) under the name of h-k-codes, where h denoted an

arbitrary antimorphic involution. A language L is said to be h-k-code if h(x) = y for all

x; y 2 SubkðLÞ: The relationship h(x) = y indicates that the molecules corresponding to x
and y can form complementarity bonds between them as shown in Fig. 2. For a suitable k, a

h-k-code avoids several types of unwanted intermolecular hybridizations.

Besides being theoretically interesting, properties such as the h-k-code property are

meant to ensure that DNA strands cannot form unwanted hybridizations during DNA

computations, and has been successfully tested in practical laboratory experiments (Jon-

oska et al. 2005). In Kari et al. (2005b), the concept of h-k-code has been extended to the

bond-free property which requires that H(h(x), y) [d for any subwords x; y 2 SubkðLÞ;
where H is the Hamming distance function between two words.

Suppose we use codes that have one or more of the desirable language properties we

have described. What may happen during the course of computation is that the properties

initially present deteriorate over time. This leads to another issue, namely to investigate

how bio-operations such as cutting, pasting, splicing, contextual insertion, and deletion

u = k

u

u

u

u

u

u

Fig. 2 Various intermolecular
hybridizations of DNA single
strands, one of which contains a
subword of length k, while the
other contains its WK
complement. A h-k-code avoids
any DNA secondary structures
like the ones above

Watson–Crick palindromes in DNA computing 301

123

affect the various bond-free properties of DNA languages. Invariance under these bio-

operations has been studied in Jonoska et al. (2005, 2006), Kari et al. (2003). Bounds on

the sizes of some other codes with desirable properties that can be constructed were

explored by Marathe et al. (1999). More recently, the concepts of involution-bordered and

unbordered words, (Kari and Mahalingam 2007a), as well as Watson–Crick conjugate and

Watson–Crick commutative words, (Kari and Mahalingam 2007b), were introduced and

studied from an algebraic point of view, as formal models of DNA strands that can form

various types of bonds.

In addition to being of interest in DNA computing experiments, the newly defined

notions such as bond-free languages, hairpin-free languages, involution-bordered words,

Watson–Crick commutative and Watson–Crick conjugate words are of theoretical interest

since they turned out to be proper generalizations of classical notions in the theory of codes

and combinatorics of words such as prefix codes, suffix codes, infix codes, comma-free

codes, bordered words, commutative and conjugate words. In the remainder of the paper

we will investigate one such concept, the Watson–Crick palindrome, which is a general-

ization of the classical notion of palindrome, and which arose from studying information

encoding in the DNA computing context.

3 Watson–Crick palindromes

The notion of h-palindrome was defined in Kari and Mahalingam (2007b) and obtained

independently in de Luca (2006). Note that if h is the Watson–Crick involution, then the

notion of Watson–Crick palindromes (Fig. 3) coincides with the term ‘‘palindrome’’ as

used in molecular biology, especially in the study of enzymes.

A restriction enzyme (or restriction endonuclease) is an enzyme that ‘‘recognizes’’ a

specific double-stranded DNA subsequence and cuts the double-stranded DNA according

to a pattern that is specific for each enzyme. The result is either two ‘‘blunt-cut’’ DNA

double-strands, or two DNA strands that are partially double-stranded and partially single

stranded, with the single-stranded parts usually called ‘‘sticky ends’’. While recognition

sequences vary widely, many of them are palindromic: The sequence on the ‘‘top strand’’

read in the 50 ? 30 direction is the same as the sequence on the ‘‘bottom strand’’ read in the

50 ? 30 direction. The meaning of ‘‘palindromic’’ in this context is different from what one

might expect from its linguistic usage: 50-GTAATG-30 is not a palindromic DNA sequence,

but 50-GTATAC-30 is (50-GTATAC-30 is WK complementary to 30-CATATG-50, which is

the same as 50-GTATAC-30). It is exactly this biological meaning of the word ‘‘palin-

drome’’ that we attempt to model here, by the notion of Watson–Crick palindrome. Using

our formalization and convention on strand directionality, if WK denotes the Watson–

Crick antimorphic involution, WK(GTATAC) = GTATAC.

Thus, the study of h-palindromes for antimorphic involutions is interesting from two

points of view: firstly, it may be desirable for certain DNA computing experiments to use

DNA strands that contain h-palindromic enzyme restriction sites as subwords, and sec-

ondly, in general, a set of DNA codewords should be free of h-palindromic words, due to

the intermolecular hybridizations that these would entail.

5’ 3’

3’ 5’

u

u

AGCTATGATCATAGCT
TCGATACTAGTATCGA

Fig. 3 An example of a
Watson–Crick palindrome

302 L. Kari, K. Mahalingam

123

The notion of h-palindrome was introduced and studied in Kari and Mahalingam

(2007b), whereby a relation on words was defined using the h-commutativity and it was

showed that, for an antimorphic involution h, the set of all h-palindromes can be char-

acterized using this relation. In this paper we study several closure and algebraic properties

of h-palindromes where h is an arbitrary involution function. In particular we concentrate

on h-palindromes where h is the Watson–Crick involution.

This section recalls some definitions, introduces the notion of h-palindrome and proves

some basic properties of h-palindromes. For example, Lemma 4 provides a closed form for

h-palindromes when h is an antimorphic involution.

We begin by reviewing some basic notions in combinatorics of words. A bordered word

is a nonempty word that has a non-empty prefix equal to one of its suffixes. A word which

is not bordered is called unbordered. Bordered words have been also called overlapping or

unipolar words and unbordered words have also been called non-overlapping, dipolar or

d-primitive words. For properties of bordered and unbordered words we refer the reader to

Yu (1998, 2005). In Kari and Mahalingam (2007a), we extended the concept of bordered

words to involution-bordered words and studied some of its algebraic properties. We now

recall some definitions introduced and used in Kari and Mahalingam (2007a, b).

Definition 1 Let h be either a morphic or an antimorphic involution on R*.

1. A word u 2 Rþ is said to be h-bordered if there exists v 2 Rþ such that

u = vx = yh(v) for some x; y 2 Rþ:
2. A non-empty word which is not h-bordered is called h-unbordered.

3. A word u is a h-conjugate of another word w if uv = h(v)w for some v 2 R�:
4. A word u is said to h-commute with v if uv = h(v)u.

5. A word x 2 R� is called a h-palindrome if x = h(x).

We also recall some of the basic observations based on the above definition (Kari and

Mahalingam 2007b). For a given alphabet R, and a morphic or an antimorphic involution

h, let Bh denote the set of all h-bordered words over R* and Ph denote the set of all

h-palindromes. We denote by �Ph the set of all non h-palindromes. Note that if h is the

morphic involution, then Ph = C* where C � R and h(a) = a for all a 2 C and h(a) = a
for all a 2 R n C: Throughout the paper we assume that the alphabet R is such that |R| C 2

and the involution h is not the identity function.

Lemma 1 Let h be either a morphic or an antimorphic involution and let R be such that
for all a 2 R; a = h(a).

1. A h-palindrome x 2 Rþ has length greater than or equal to 2.

2. For all a 2 R; a 2 �Ph:
3. For all a 2 R; an 2 �Ph for all n C 1.

A word u is called primitive if it is not a power of another word, i.e., there exits no word

z such that w = zk for some k [1. If u is not primitive such that u = zk then the primitive

root of u is z and is denoted by
ffiffiffi

u
p

: We have the following observation.

Observation 1 Let h be either a morphic or an antimorphic involution and let u 2 R�:
Then

1. u 2 Ph iff
ffiffiffi

u
p
2 Ph

2. u 2 Ph iff un 2 Ph for all n C 1.

Watson–Crick palindromes in DNA computing 303

123

Lemma 2 Let h be an antimorphic involution and for all a 2 R let a = h(a). Then
x 2 Rþ is a h-palindrome iff x = ayh(a) for some a 2 R and y 2 Ph:

Proof If x is a h-palindrome then x = h(x). Let x = aq for some a 2 R and q 2 R�: Then

h(x) = h(q)h(a) and since x = h(x), we have aq = h(q)h(a). If q = k then a = h(a) a

contradiction to our assumption. Thus q 2 Rþ and there exists y 2 R� and b 2 R such that

q = yb and x = aq = ayb = h(b)h(y)h(a). Thus b = h(a) and y = h(y) and x = ayh(a)

with y 2 Ph: The converse is obvious. h

We recall the following propositions from Kari and Mahalingam (2007b) and Lyndon

and Schutzenberger (1962) regarding conjugacy, commutativity, h-conjugacy and

h-commutativity of words, which we will use in this paper.

Proposition 1 (Lyndon and Schutzenberger 1962) Let u; v;w 2 Rþ such that uv = vw.

Then there exist p; q 2 Rþ such that u = pq, w = qp and v = p(qp)i.

Proposition 2 (Lyndon and Schutzenberger 1962) Let u; v 2 Rþ such that uv = vu. Then
both u and v are powers of a common word.

Proposition 3 (Kari and Mahalingam 2007b) Let u; v;w 2 Rþ such that uv = h(v)w.

1. If h is a morphic involution, then there exist x; y 2 R� such that u = xy and one of the
following hold:

(a) w = yh(x) and v = (h(xy)xy)ih(x) for some i C 0.

(b) w = h(y)x and v = (h(xy)xy)ih(xy)x for some i C 0.

2. If h is an antimorphic involution, then either u = xy and w = yh(x) for some x; y 2 R�

or u = h(w).

We recall the following result from Kari–Mahalingam–Seki.

Proposition 4 (Kari–Mahalingam–Seki) Let h be an antimorphic involution and let u 2
Rþ such that u = ab for some non-empty a; b 2 Ph: Then there uniquely exist two distinct
h-palindromes x; y 2 Ph and n C 1, such that u = (xy)n and every factorization u = pq,

p; q 2 Rþ \ Ph; has the property that p = x(yx)i, q = y(xy)j such that i ? j = n - 1.

In (Kari–Mahalingam–Seki) the words x and y have been called the antimorphic twin-
roots of u relative to h, or simply antimorphic twin-roots of u, if h is obvious from the

context. It was also shown in Kari–Mahalingam–Seki that if a word u can be decomposed

as a product of two non-empty h-palindromes then the primitive root of u is the catenation

of its antimorphic twin-roots.

Proposition 5 (Kari and Mahalingam 2007b) Let u; v 2 Rþ such that u h-commutes with
v, i.e., uv = h(v)u.

1. If h is a morphic involution, then one of the following hold:

(a) u = an, v = am for a 2 Ph; m, n C 1.

(b) u = h(a)[ah(a)]n, v = [ah(a)]m for some m C 1 and k C 0.

2. If h is an antimorphic involution, then u = a(ba)n, v = (ba)m for some a; b 2 Ph;
m C 1 and n C 0.

Note that for an antimorphic involution h if uv = h(v)u then v can be written as a

product of two palindromes and, from Proposition 4, we deduce the existence of unique

distinct h-palindromes x, y such that v = (xy)n and such that every factorization of v into

304 L. Kari, K. Mahalingam

123

two non-empty h-palindromes v = pq has the property that p and q can be written in terms

of x and y. We have thus the following result.

Lemma 3 Let h be an antimorphic involution and let u; v 2 Rþ such that u h-commutes
with v. Then u = x(yx)j, v = (yx)i for some i C 1 and j C 0 where x and y are the anti-
morphic twin-roots of v.

It was shown in Kari and Mahalingam (2007b) that for an antimorphic involution h,

w 2 Ph iff there exists v 2 R� such that v = w and w = vx = h(x)v for some x 2 Rþ: We

also show a similar kind of relation (Lemma 5) between the words that h-commute and the

set of all Watson–Crick palindromes. Using this result and Proposition 5 we can deduce the

following.

Lemma 4 Let h be an antimorphic involution. Then w 2 Ph iff w = a(ba)i for some
a; b 2 Ph and i C 0.

Lemma 5 Let h be an antimorphic involution and let u; v 2 Rþ such that uv 2 Ph: Then,

1. u h-commutes with v iff u 2 Ph:
2. v h-commutes with h(u) iff v 2 Ph:

Proof

1. Let u h-commute with v. Then uv = h(v)u and by Proposition 5 we have u = a(ba)i for

some a; b 2 Ph which implies that u 2 Ph: Conversely let u 2 Ph: Given that uv 2 Ph;
we have uv = h(uv) = h(v)h(u) = h(v)u which implies that u h-commutes with v.

2. Similar. h

Lemma 6 Let h be an antimorphic involution. Then u 2 Ph iff there exists a v 2 Rþ such
that u h-commutes with v.

Proof Let u 2 Ph: Then for v = u we have uv = h(v)u i.e., u h-commutes with itself.

Conversely let u h-commute with v for some v 2 Rþ: Then from Proposition 5 there exist

a; b 2 Ph such that u = a(ba)i which is clearly a h-palindrome. h

4 Classification of the set of Watson–Crick palindromes

In this section we discuss the properties satisfied by the set of all h-palindromes over a

given alphabet. We show that for an antimorphic involution the set of all h-palindromes is

context-free (Proposition 7) but not regular (Lemma 9). We also prove several other

properties of h-palindromes. If h is an antimorphic involution then both the set of all h-

palindromes and its complement are dense (Proposition 6). In fact, Lemma 11 gives the

precise number of such h-palindromes of length 2k for an antimorphic involution: mk

where m is the cardinality of the alphabet. This implies that, in the case of the DNA

alphabet and WK complementarity, there is a rich set of both WK-palindromic and WK-

non-palindromic sequences to choose from. The situation is quite different in the case of a

morphic involution, where the set of h-palindromes is much smaller. Indeed, for a morphic

involution h over R, the set of all h-palindromes equals R0*, where R0 � R and h(a) = a
for all a 2 R0 while h(b) = b for all b 2 R n R0 (Corollary 1). In particular, if R0 ¼ ;; the

only h-palindrome is the empty word (Lemma 10).

We recall the following definitions.

Watson–Crick palindromes in DNA computing 305

123

Definition 2 A language L is said to be:

1. h-stable if hðLÞ � L:
2. Transitive if for all x; y 2 L there exists z 2 R� such that xzy 2 L:
3. Prolongable if for all x 2 L there exist p; q 2 Rþ such that pxq 2 L:
4. Dense if for all u 2 R�; L \ R�uR� 6¼ ;:

Given a finite alphabet set R and let h be either a morphic or an antimorphic involution

on R*. In the next propositions we show that the set of all h palindromes is h-stable for

both morphic and antimorphic involutions h. We denote by Ph the set of all h-palindromes

and by �Ph the set of all non h-palindromes.

Lemma 7 Let h be a morphic or an antimorphic involution. Then both Ph and �Ph are
h-stable.

Proof Let Ph be the set of all h-palindromes and then for all w 2 Ph; hðwÞ ¼ w 2 Ph:
Thus Ph is h-stable and also w 2 �Ph iff h(w) = w iff hðwÞ 2 �Ph and hence �Ph is h-stable. h

Proposition 6 Let h be an antimorphic involution. Then both

1. Ph and �Ph are dense.

2. Ph and �Ph are prolongable.

Proof

1. In order to show that Ph is dense we need to show that for all u 2 R� there exist

x; y 2 R� such that xuy 2 Ph: If u 2 Ph then for x = y = k, xuy 2 Ph and similarly if

u 2 �Ph then for x = k and y = h(u) or y = k and x = h(u), xuy 2 Ph:
2. For every w 2 Ph; w = h(w). For all a 2 R; awhðaÞ 2 Ph since h(awh(a)) = ah

(w)h(a) = awh(a). For every w 2 �Ph; w = h(w) and for all a; b 2 R; awb 62 Ph since

h(awb) = h(b)h(w)h(a) = awb since w = h(w). h

In the following Lemma we prove a relation between the set of all non h-palindromes

and h-unbordered words.

Lemma 8 Let h be an antimorphic involution and let R be such that for all a 2 R;
h(a) = a. Then the set of all h-palindromes Ph is a proper subset of the set of all
h-bordered words Bh.

Proof Let w 2 Ph: Note that w = a for all a 2 R since a = h(a). Since w = h(w) we

have w = axh(a) for some x 2 Ph which clearly implies that w 2 Bh: h

We recall the following definition from Kari et al. (2007).

Definition 3 Let h be either a morphic or an antimorphic involution. A word u 2 R� is

said to be an (h, k)-hairpin-free if u = xvyh(v)z or u = xh(v)yvz where x; v; y; z 2 R�

implies |v| \ k.

We denote by hpf(h, k) the set of all (h, k)-hairpin-free words in R* and note that when

k = 1 we obtain the set of all hairpin-free words over R*. It was shown in Kari et al.

(2007) that the set of all hairpin-free words is closed under insertion. Note that the set of all

involution palindromes is a subset of the set of all hairpin-free words. The set of all

h-palindromes is not closed under insertion, i.e., for all u ¼ u1u2 2 Ph; there exists w 2 R�

such that u1wu2 62 Ph: Note that it was shown in Kari and Mahalingam (2007c) that Bh, the

set of all h-bordered words, is a proper subset of the set of all hairpin-free words and hence

306 L. Kari, K. Mahalingam

123

Ph is a proper subset of the set of all hairpin-free words. In Kari and Mahalingam (2007a),

it was shown that for an antimorphic involution h, the set of all h-bordered words is

regular. We show using pumping lemma for regular languages that the set of all h-

palindromes is not regular.

Lemma 9 When h is an antimorphic involution, the set of all h-palindrome words is not
regular.

Proof Let h be an antimorphic involution. Since h is not the identity function and |R| C 2,

there exist a; b 2 R such that a = b, h(a) = b and h(b) = a. Assume that the language Ph

of all h-palindromes is regular and let n be the constant given by the pumping lemma.

Choose w = anbn and note that w = h(w) and hence w is a h-palindrome. Let

w = anbn = xvy such that |xv| B n and |v| [0. Then z = xviy contains more a’s than b’s

for all i C 2 and hence z is not a h-palindrome. Thus Ph is not regular. h

In the following proposition we construct a context-free grammar that generates the set

of all h-palindromes over a finite alphabet set for an antimorphic involution h.

Proposition 7 For an antimorphic involution h, the set Ph is context-free.

Proof Let R be a finite alphabet set and let G ¼ ðfX; Yg;R;X;RÞ where R ¼ fX ! k;
Y ? k, X ? aiXh(ai) for all ai 2 R and X ? biYbi, Y ? biYbi for all bi 2 R such that

bi = h(bi)}. It is easy to check that G generates the set of all h-palindromes over R and G is

context-free. h

In the next lemma we observe that for a morphic involution h which is not identity for

all letters in R, a h-palindrome must be of even length.

Lemma 10 Let R be such that for all a 2 R; h(a) = a.

1. When h is a morphic involution, then Ph = {k}.

2. When h is an antimorphic involution, then for all u 2 Ph; the length of u is an even
number.

Proof

1. Let u ¼ a1a2. . .an 2 Ph and h be a morphic involution. Then u = a1a2 … an = -

h(a1)h(a2) … h(an) which implies that h(ai) = ai for all 1 B i B n a contradiction to

our assumption. Hence u = k.

2. Let u be a h-palindrome and hence u = h(u). Let u = a1a2 … an for some ai 2 R:
Then u = a1a2 … an = h(an)h(an-1) … h(a1) and hence ai = h(an-i?1) for all

1 B i B n. Suppose n = 2k ? 1, then for i = k ? 1, ak?1 = h(an-i?1) = h(a2k?1-

k-1?1) = h(ak?1) which is a contradiction. Thus n has to be even. h

Corollary 1 Let h be a morphic involution over an alphabet R. Then the set of all h-
palindromes, Ph, is regular and equals R’*, where R0 � R and h(a) = a for all a 2 R0;
while h(b) = b for all b 2 R n R0:

Lemma 11 Let h be an antimorphic involution and let Ph
(n) be the set of all h-palindromes

of length n. Let R be such that |R| = m and let R0 � R be the maximal subset such that for
all a 2 R0; a = h(a) and |R0| = r. Then,

1. when n = 2k ? 1, |Ph
(n)| = mkr.

2. when n = 2k, |Ph
(n)| = mk.

Watson–Crick palindromes in DNA computing 307

123

Proof Let u 2 P
ðnÞ
h : When n = 2k ? 1, then u = a1a2 … a2k?1 = h(a1a2 … a2k?1) =

h(a2k?1)h(a2k) … h(a2)h(a1). Thus u = a1a2 … ak ak?1h(a1 … ak) with ak?1 = h(ak?1).

Hence we have m choices for all the first k positions and r choices for the k ? 1th position

and only one choice for the remaining positions. Hence |Ph
(n)| = mk 9 r = mkr. The

argument is similar when n = 2k and for all u 2 P
ð2kÞ
h ; u = a1a2 … ak h(a1a2 … ak) and

hence we have m choices for the first k positions and only one choice for the remaining

positions and thus |Ph
(n)| = mk. h

Example 1 Let R = {a,b} and let h be an antimorphic involution such that h(a) = b and

h(b) = a. Note that |R| = m = 2. For n = 4 = 2k, we have k = 2 and the set of all h-

palindromes of length 4 is Ph
(4) = {abab, baba, bbaa, aabb} and |Ph

(4)| = 4 = mk = 22.

The number of all non h-palindromes of length 4 is 24 - 4 = 12.

Example 2 Consider the DNA alphabet D = {A,G,C,T} and let h be an antimorphic

involution that maps A 7! T and C 7!G: For n = 4 = 2k, we have k = 2 and the set of all

h-palindromes of length 4 is given by Ph
(4) = {AATT, ATAT, ACGT, AGCT, CATG, CTAG,

CCGG, CGCG, GATC, GTAC, GCGC, GGCC, TATA, TTAA, TCGA, TGCA}. It is easy to

check that |Ph
(4)| = 16 = 42 = mk.

5 Simultaneous Watson–Crick conjugate equations

In this section we concentrate on simultaneous word equations especially involving words

that are WK-conjugates. Even though we concentrate on the WK-involution, our results

hold for a general involution mapping which can be either a morphism or an antimorphism.

We observe that the solutions of such equations are nothing but a product of

h-palindromes.

In the following Proposition we solve a simultaneous equation concerning a word x such

that x is h-conjugate to its WK complement.

Proposition 8 Let x; y 2 Rþ such that xy = h(y)h(x) and xh(y) = yh(x).

1. If h is a morphic involution, then x = am and y = an for some a 2 Ph:
2. If h is an antimorphic involution, then x = (ab)m, y = a(b a)n with both a; b 2 Ph and

for some m C 1, n C 0.

Proof

1. Let h be a morphic involution. We first consider the case when |x| \ |y|. The other case

when |y| B |x| is similar. Let |x| \ |y|, then xy = h(y)h(x) implies that h(y) = xy1,

y = y1h(x) and xh(y) = yh(x) implies that y = xh(y1), h(y) = h(y1)h(x) for some y1 2
Rþ: Thus we can deduce that x = h(x), xy1 = h(y1)x and xh(y1) = y1x. Then by

Proposition 5, either x = ai, y1 = aj with a = h(a) or x = [h(a)a]kh(a), y1 = [ah(a)]l.

If x = [h(a)a]kh(a), then since x = h(x) we deduce that a = h(a) and hence x = ai and

y = aj for some a 2 Ph:
2. Let h be an antimorphic involution. We first consider the case when |x|\ |y|. The other

case when |y| B |x| is similar. Let |x| \ |y|, then xy = h(y)h(x) implies that h(y) = xy1,

y = y1h(x) for some y1 2 Rþ and xh(y) = yh(x) implies that y = xh(y00),
h(y) = h(y00)h(x) for some y00 2 Rþ: Thus we can deduce that y = xh(y00) = y1h(x)

and y1 = h(y1), y00 = h(y00). Let |x| \ |y1|, then we have y1 = xs1 = h(s1)h(x) and

y00 = xh(s1) = s1h(x) for some s1 2 Rþ: Hence y = x2h(s1) = h(s1)h(x)2. Note that

308 L. Kari, K. Mahalingam

123

from applying Proposition 5 to h(s1)h(x2) = x2h(s1), we can deduce that hðs1Þ 2 Ph:
Thus y1 = s1h(x) = xs1 and by Proposition 5 there exist a; b 2 Ph such that

s1 = a(ba)i and x = (ab)m for m C 1 and i C 0. Therefore y = y1h(x) = s1h(x)(-

x) = a(ba)n. If |x| C |y1|, then x = y1h(x2) = x1x2 where x2 2 Ph; x1 = y1. Also, y00 ¼
hðx1Þ 2 Ph which implies x1 2 Ph: Hence x = ab, y = aba where x1 = a, x2 = b and

a;b 2 Ph: h

Example 3 Consider the DNA alphabet D = {A,G,C,T} and let h be the Watson–Crick

involution. Let x = ATCG, y ¼ ATCGAT 2 Ph and h(x) = CGAT. Then we have

xh(y) = h(y)h(x) and xh(y) = yh(x) with x = ab and y = (ab)a for a = AT and b = CG.

The following corollary is similar to that of the above proposition (Proposition 5) and

hence we omit the proof. Replacing x with h(y) and y with h(x) in Proposition 8 we obtain

the following.

Corollary 2 Let x; y 2 Rþ such that xy = h(y)h(x) and h(x)y = h(y)x.

1. If h is a morphic involution then x = am, y = an for some a 2 Ph:
2. If h is an antimorphic involution then x = a(ba)n, y = (ba)m, a; b 2 Ph and m C 1,

n C 0.

Example 4 Consider the DNA alphabet D = {A,G,C,T} and let h be the Watson–Crick

involution. Let x ¼ ATCGAT 2 Ph; y = CGAT and h(y) = ATCG. Then we have

xy = h(y)h(x) and h(x)y = h(y)x = ATCGATCGAT with a = AT, b = CG and x = a(ba),

y = ba.

Proposition 9 Let x; y 2 Rþ such that xy = h(y)h(x) and yx = h(x)h(y). Let h be either a
morphic or an antimorphic involution, then one of the following holds:

1. x = pm, y = pn for p 2 Ph and m, n C 1.

2. x = [h(p)p]mh(p), y = [ph(p)]np, for p 2 Rþ and m, n C 0.

Proof Let h be a morphic involution and let xy = h(y)h(x), yx = h(x)h(y). If |x| \ |y| then

h(y) = xy1, y2 = h(x) and hence y = h(x)h(y1) = y1y2. Thus y = y2h(y1) = y1y2 which

implies that y2 h-commutes with h(y1). Then by Proposition 5, we have one of the

following:

-y1 = pi, y2 = pm = x for p 2 Ph:
-y1 = [ph(p)]i, y2 = [ph(p)]mp = h(x) for some p 2 Rþ:

Thus either we have x = pm and y = pn for p 2 Ph or x = [h(p)p]mh(p) and

y = [ph(p)]np, p 2 Rþ: The case when |y| B |x| is similar.

Let h be an antimorphic involution and let xy = h(y)h(x), yx = h(x)h(y). If |x| \ |y|, then

xy = h(y)h(x) implies that there exists y1 2 Rþ such that h(y) = xy1 and y2 = h(x). Thus

we can deduce that y1 2 Ph and y = y1h(x). Substituting this in yx = h(x)h(y) we obtain

y1y2h(y2) = y2h(y2)y1. Let z = y2h(y2) then zy1 = y1z and hence there exists s 2 Rþ such

that z = si and y1 = sj. Note that s 2 Ph since y1 2 Ph: We have z = y2h(y2) = si and we

have either y2 ¼ sj1 ; hðy2Þ ¼ sj1 or y2 ¼ si1 s1; hðy2Þ ¼ s2si2 where s = s1s2. Therefore

y2 ¼ si1 s1 ¼ si2hðs2Þ: Thus we have i1 = i2, s1 = h(s2) = p and y1 = [ph(p)]i,

y2 = [ph(p)]mp. Hence either x = sl and y = sm for s 2 Ph or x = [h(p)p]mh(p) and

y = [ph(p)]np. The case when |y| B |x| is similar. h

Watson–Crick palindromes in DNA computing 309

123

Example 5 Consider the DNA alphabet D = {A,G,C,T} and let h be the Watson–Crick

involution. Let x = ACTGCAGTACTG and y = CAGT. Then we have xy = h(y)h(x) =

ACTGCAGTACTGCAGT and yx = h(x)h(y) = CAGTACTGCAGTACTG with p = CAGT,

m = 1, n = 0.

Replacing x with h(x) and viceversa in Proposition 9 we obtain a similar result.

Corollary 3 Let x; y 2 Rþ such that h(x)y = h(y)x and xh(y) = yh(x). Let h be either a
morphic or an antimorphic involution, then one of the following holds:

1. x = pm, y = pn for p 2 Ph and m, n C 1.

2. x = [ph(p)]mp, y = [ph(p)]np, for p 2 Rþ and m, n C 0.

Lemma 12 Let h be either a morphic or an antimorphic involution and let x; y 2 Rþ:
Then xu = h(u)y and xh(u) = uy iff x2k?1u = h(u)y2k?1 and x2ku = uy2k for all k C 0.

Proof Assume xu = h(u)y and xh(u) = uy. Then x2k?1u = x2k � xu = x2kh(u)y =

x2k-1uy2 = _ = h(u)y2k?1. Similarly we can show that x2ku = uy2k. Conversely, let

x2k?1u = h(u)y2k?1 and x2ku = uy2k. Then x � x2kþ1u ¼ x � hðuÞy2kþ1 and x � x2k?1

u = x2k?2u = uy2k?2. Thus we have xh(u)y2k?1 = uy � y2k?1 and hence by length argu-

ment we have that xh(u) = uy. Substituting k = 0 in x2k?1u = h(u)y2k?1 we get

xu = h(u)y. h

Proposition 10 Let h be either a morphic or an antimorphic involution and let x; y; u 2
Rþ such that xu = h(u)y and xh(u) = uy. Then x = (ab)m, y = (ba)m and u = (ab)na [Ph

for some a; b 2 Ph; m C 1 and n C 0.

Proof If |x| = |u|, then x = u = y = h(u).

Let h be a morphic involution and suppose |x| \ |u|, then h(u) = xu1 = h(u1)y and

u = u1y = xh(u1) for some u1 2 Rþ: Thus we can deduce that x = h(x) and y = h(y). We

have u = xh(u1) = u1y and hence from Proposition 3 there exist s; t 2 R� such that x = st,
y = ts and u1 = (st)is with s; t 2 Ph since x; y 2 Ph: If |x| [|u| then there exists y1 2 Rþ

such that x = h(u)y1, y = y1u and x = uy1, y = y1h(u) and we can deduce that u 2 Ph:
Thus the equation xu = h(u)y becomes xu = uy and from Proposition 1 we have x = ab,

y = ba and u = (ab)na. Since u 2 Ph; both a; b 2 Ph:
Let h be an antimorphic involution. If |x| [|u| then we have x = h(u)y1 = uy1 and

y = y1u = y1h(u) and hence u = h(u). Thus we can deduce, xu = uy and hence from

Proposition 1 we get x = ab, y = ba and u = (ab)na. Suppose |x| \ |u|, then

h(u) = xs = s1y and u = xs1 = s y for some s; s1 2 Rþ: Thus we can deduce that

s1 = h(s1), s = h(s) and x = h(y) and hence we have u = sy = sh(x) = xs1. Then from

Proposition 3 either s = h(s1) or s = pq, s1 = qh(p) and x = p. If s = h(s1) then we have

s = s1 since s1 2 Ph and u = sh(x) = xs and by Proposition 5, there exist a; b 2 Ph such

that s = a(ba)i and x = (ab)j and hence y = (ba)j, u = a(ba)n. If s = pq, s1 = qh(p) and

x = p holds, then we have s = pq = h(q)h(p) and s1 = qh(p) = ph(q) and hence from

Proposition 8 there exist a; b 2 Ph such that p = (ab)i and q = a(ba)j. Then we have

x = (ab)i, y = h(x) = (ba)i and u = sy = (ab)k a. h

Example 6 Consider the DNA alphabet D = {A,G,C,T} and let h be the Watson–Crick

involution. Let x = ATCG, y = CGAT and u ¼ ATCGAT 2 Ph: Then we have xu = h(u)y
and xh(u) = uy where a = AT and b = CG.

310 L. Kari, K. Mahalingam

123

6 Properties of Watson–Crick palindromes

In this section we concentrate on several basic algebraic and closure properties of set of all

h-palindromes over a given alphabet R where h is an antimorphic involution. In particular we

concentrate on WK-palindromes. As we will see, for an antimorphic involution the set of

h-palindromes is not in general closed under catenation (Lemma 13 and related observa-

tions) nor under insertion (Lemma 15 and related observations). This would imply that, in

the case of DNA, unwanted WK-palindromes can be easily disposed of by simple DNA

manipulations. Lemma 19 provides a connection between h-palindromes and primitive

words in the case of an antimorphic involution. It turns out that a word u h-commutes with v
if and only if both v and its primitive root can be written as a product of two h-palindromes.

Finally, we show that for an antimorphic involution, any h-palindrome that cannot be written

as a product of two nonempty h-palindromes must be primitive (Corollary 6).

Observe that the set of all WK-palindromes is not necessarily closed under concate-

nation. For example consider the DNA alphabet {A, C, G, T} and let u = ATAT and

v = CGCG with both u; v 2 Ph since h(u) = ATAT = u and h(v) = CGCG = v. But

uv = ATATCGCG and h(uv) = CGCGATAT = uv which implies that uv 62 Ph: In the

following lemma we provide with necessary and sufficient condition for uv 2 Ph provided

u; v 2 Ph:

Lemma 13 Let h be an antimorphic involution and let u; v 2 Ph: Then uv 2 Ph iff u and v
are powers of a common palindromic word.

Proof Assume that uv 2 Ph: Then uv = h(uv) = h(v)h(u) = vu which implies that u and

v are powers of a common word, i.e., u = si and v = sj with s 2 Ph since u; v 2 Ph: The

converse is straightforward. h

Lemma 14 Let h be an antimorphic involution and let x 2 Rþ such that x 2 Ph: Let
x = uv with u; v 2 Rþ: Then,

1. u 2 Ph iff uvk 2 Ph for all k C 2.

2. v 2 Ph iff ukv 2 Ph for all k C 2.

Proof

1. Assume u 2 Ph: We show that uvk 2 Ph for all k C 2. Since x ¼ uv 2 Ph;
uv = h(uv) = h(v) h(u) = h(v)u. Then by Proposition 5 we have u = a(ba)n and

v = (ba)m for a; b 2 Ph: Then we have uvk ¼ aðbaÞnðbaÞmk ¼ aðbaÞi 2 Ph: Con-

versely, let uvk 2 Ph for all k C 2. Given that uv 2 Ph; then uvk = h(uvk) = h(vk-1)

h(v)h(u) = h(vk-1)uv. Thus we have uvk-1 = h(vk-1)u and from Proposition 5 we

have u ¼ aðbaÞn 2 Ph since a; b 2 Ph:
2. Similar. h

Example 7 Consider the DNA alphabet D = {A, G, C, T} and let h be the Watson-Crick

involution. Let u = ATCGAT and v = CGAT. Then for x = uv = ATCGATCGAT we have

both x; u 2 Ph: Observe that uvk 2 Ph for all k C 0 and ukv 62 Ph for all k C 2.

Corollary 4 Let h be an antimorphic involution and let uv 2 Ph; then u; v 2 Ph iff
uþvþ 2 Ph:

It was shown in Kari et al. (2007) that the set of all hairpin-free words is closed under

insertion. Observe that neither the set of all h-bordered words nor the set of all

Watson–Crick palindromes in DNA computing 311

123

h-palindromes are closed under insertion. For example consider the DNA alphabet {A, G,

C, T} and let u ¼ ATAT ¼ u1u2 2 Ph and let w = CGA. Then u1wu2 ¼ ACGATAT 62 Ph:
The following lemma provides conditions under which the insertion into a h-palindrome

results in h-palindromic words.

Lemma 15 Let h be an antimorphic involution and let x; v; y 2 Rþ such that xy 2 Ph: If
xvy 2 Ph then v can be written as a product of two palindromes.

Proof Given that xy; xvy 2 Ph and let |x| = |y|. Then xvy = h(y)h(v)h(x) and xy = h(y)h(x).

Since |x| = |y| we have x = h(y) and v = h(v). If |x| \ |y| such that |y| B |xv| then h(y) = xy1,

y2 = h(x) where y = y1y2, which implies that y1 2 Ph:Also, xvy = h(y)h(v)h(x) implies that

h(y) = xv1, h(v)h(x) = v2y and hence v2 2 Ph and y1 ¼ hðv1Þ 2 Ph: Thus v = v1v2 with

v1; v2 2 Ph: If |x| \ |y| such that |y| [|xv| then xy 2 Ph implies that h(y) = xy1 = h(y2)h(y1),

y2 = h(x) and xvy 2 Ph implies that h(y) = xvy0 = h(y00)h(y0) and y00 = h(v)h(x) with

y = y0y00 = y1y2. Thus we have y1; y
0 2 Ph and xy = xy0y00 = xy0h(v)h(x). Since xy 2 Ph;

xy = xy0h(v)h(x) = xvy0h(x) which implies that y0h(v) = vy0. Then by Proposition 5 there

exist a; b 2 Ph such that y0 = a(ba)i and v ¼ ðabÞj ¼ ðabÞj1a � bðabÞj2 with

ðabÞj1a; bðabÞj2 2 Ph: The case when |y| \ |x| is similar. h

The converse of the above Lemma does not hold in general. For example consider

xy ¼ ATCGAT 2 Ph and v = ATCG such that AT;CG 2 Ph: But xvy ¼ ATC � ATCG �
GAT ¼ ATCATCGGAT 62 Ph where x = ATC and y = GAT.

Lemma 16 Let h be an antimorphic involution and let x; y 2 Ph: If there exists a z 2 R�

such that |xz| C |y|, |yz| C |x| and xzy 2 Ph then x = a(ba)i, y = a(ba)j for some i, j C 0

with a; b 2 Ph:

Proof Let x; y; xzy 2 Ph: Then xzy = h(xzy) = yh(z)x. If z = k then we have xzy = x-
y = yx. Since |xz| C |y| and |yz| C |x|, we have that x = y and the statement of the Lemma

holds.

Assume that z = k. If |x| \ |y| then there exists z1 2 Rþ such that y = xz1, z = z1z2,

z2y = h(z2)h(z1)x. Thus we can deduce that z2 2 Ph and y = xz1 = h(z1)x. Thus by Propo-

sition 5 there exist a; b 2 Ph such that x = a(ba)i and z1 = (ba)j and hence y = a(ba)k. If

|x| C |y| then there exists z2 2 R� such that x = yh(z2), z = z1z2, zy = h(z1)x. Thus we can

deduce that z1 2 Ph and x = z2y = yh(z2). Again using Proposition 5, we can find an a; b 2
Ph such that y = a(ba)i and h(z2) = (ba)j. Then we have x = a(ba)k. h

The above lemma doesn’t hold when |xz| \ |y| or |yz| \ |x|. For example let x = ATC-
GAT, y = ATCGATACGTATCGATCGATACGTATCGAT and z = ACGTATCG. Note that

x; y; xzy 2 Ph and |xz| \ |y|. But x = a(ba) for a = AT, b = CG with a; b 2 Ph and

y = [ATCGATACGTATCG]2AT = a(ba)i for all i C 0. Also y = x (px)j for p 2 Ph:
In the following lemma we use some of the various simultaneous conjugate equations

from Sect. 5 to show other properties of palindromic words.

Lemma 17 Let h be an antimorphic involution and let u; v 2 Rþ:

1. If uv; hðuÞv 2 Ph then u 2 Ph:
2. If uv; uhðvÞ 2 Ph then v 2 Ph:

Proof

1. Given uv; hðuÞv 2 Ph then from Corollary 2 we have u = a(ba)n, a; b 2 Ph and hence

u 2 Ph:

312 L. Kari, K. Mahalingam

123

2. Given uv; uhðvÞ 2 Ph; then by Proposition 8 we have v = a(ba)n with a; b 2 Ph and

hence v 2 Ph: h

Lemma 18 Let h be an antimorphic involution and let u; v 2 Rþ such that u 2 Ph and
either uv 2 Ph or vu 2 Ph then v is a product of two palindromes.

Proof We have uv = h(uv) = h(v)h(u) = h(v)u since u 2 Ph: Thus u h-commutes with v
and by Proposition 5 we have u = a(ba)i, v = (ba)j with a; b 2 Ph: Thus v ¼ ðbaÞi1b �
aðbaÞi2 with i1 ? i2 = j - 1 and ðbaÞi1b; aðbaÞi2 2 Ph:

Recall that a word u 2 Rþ is called primitive if it is not a power of another word, i.e.,

there exists no word s such that u = sk for some k [1. If u = sk for some k C 2, and s is

minimal in length then we call s to be the primitive root of u. We show in the following

Lemma that the primitive root of a non-palindromic word v can be written as a product of

two Watson–Crick palindromes iff there exists another word that h-commutes with v.

Lemma 19 Let h be an antimorphic involution and let v 2 Rþ n Ph: Then the primitive
root of v (written as

ffiffiffi

v
p

) is the product of two non-empty Watson–Crick palindromes iff
there exists a non-empty u 2 Ph such that u h-commutes with v.

Proof Assume that there exists a u 2 Ph such that u h-commutes with v. Then uv = h(v)u
and by Proposition 5 there exist a; b 2 Ph such that u = b(ab)j and v = (ab)i. Observe that

a and b cannot be simultaneously empty since u; v 2 Rþ: If one of a or b is empty then

u = ai and v = aj or u = bi and v = bj. Both cases imply that v 2 Ph which is a con-

tradiction to our assumption. Hence both a; b 2 Rþ: Note that from Lemma 3,
ffiffiffi

v
p ¼ xy

where x, y are the antimorphic twin-roots of v and thus non-empty h-palindromes. Con-

versely, let
ffiffiffi

v
p
¼ ab for some a; b 2 Ph \ Rþ: Then v = (ab)i for some i C 1 and hence

for u = b(ab)j for some j C 0 we have uv = b(ab)j(ab)i = h(v)u. h

Lemma 20 Let h be an antimorphic involution and let u = xy be a primitive word such
that x; y 2 Ph \ Rþ: Then u 62 Ph and the factorization of u such that u is a product of two
non empty h-palindromes is unique.

Proof Given u = xy with x; y 2 Ph \ Rþ: Suppose u 2 Ph then u = xy = h(u) =

h(y)h(x) = yx which implies that x = si and y = sj for some s 2 Rþ and i, j C 1. Note that

s 2 Ph since both x; y 2 Ph: Thus we have u = si?j a contradiction since u is primitive.

Hence u 62 Ph:

Suppose the factorization of u = xy is not unique. Then there exist a; b 2 Ph \ Rþ such

that u = xy = ab. If |y| \ |b|, then there exists s 2 Rþ such that b = sy = h(y)h
(s) = yh(s) = h(b) and x = as = h(s)h(a) = h(s)a = h(x). Thus u = xy = asy = h(s)a
y = ab = ayh(s) and ay commutes with h(s). Thus there exists r 2 Rþ such that ay = ri

and h(s) = rj. Hence u = ri?j a contradiction since u is primitive. Thus we have a = x and

b = y. Thus the factorization of u = xy is unique. h

In the next result we show that a word u which is not a WK-palindrome can be written

as a product of two WK-palindromes iff the primitive root of u can also be written as a

product of two WK-palindromes.

Lemma 21 Let h be an antimorphic involution. A non h-palindrome u is a product of two
h-palindromes p, q if

ffiffiffi

u
p

is a product of two h-palindromes.

Watson–Crick palindromes in DNA computing 313

123

Proof Let u = pq with p; q 2 Ph \ Rþ and u 62 Ph: Then by Proposition 4 and (Kari–

Mahalingam–Seki) there uniquely exist x; y 2 Ph such that u = (xy)n and
ffiffiffi

u
p
¼ xy: Con-

versely, if
ffiffiffi

u
p
¼ ab; then u = (ab)n = ab(ab)n-1 with a; bðabÞn�1 2 Ph: h

Note that not all non-h-palindromes can be written as a product of two h-palindromes.

For example consider the words aba and abaa over the alphabet set {a, b}. Let h be an

antimorphic involution that maps a to b and viceversa. Then both aba; abaa 62 Ph: Also

aba = pq and abaa = st for all p; q; s; t 2 Ph: Based on the previous results we have the

following observation.

Corollary 5 Let u 2 Rþ such that u 62 Ph: Then the following are equivalent.

1.
ffiffiffi

u
p

is the product of two non-empty WK-palindromes.

2. There exists v 2 Ph \ Rþ such that v h-commutes with u.

3. u is a product of two non-empty WK-palindromes.

Let u be a h-conjugate of w. In the following lemma we find necessary and sufficient

conditions under which w 2 Ph whenever u 2 Ph: In order to prove the following Lemma

we use the result in Proposition 8.

Lemma 22 Let h be an antimorphic involution and let u be a h-conjugate of w and let
u 2 Ph: Then w 2 Ph iff u = w.

Proof Let u be a h-conjugate of w and let u 2 Ph: Assume that w 2 Ph: Since h is an

antimorphism, by Proposition 3, we have either u = h(w) or u = xy and w = yh(x). The

case when u = h(w) implies that u = w since w 2 Ph: Assume that u = xy and w = yh(x).

Since both u;w 2 Ph we have that u = xy = h(y)h(x) and w = yh(x) = xh(y) and by

Proposition 8 we have that u = a(ba)n and w = a(ba)n and hence u = w. The converse is

straightforward. h

Lemma 23 Let h be either a morphic or an antimorphic involution and let u;w 2 Rþ

such that u 2 Ph and w = xu = uy for some x; y 2 Rþ then either w 2 Ph or w 2 Bh such
that w = pqp with p 2 Ph:

Proof Given that w = xu = uy for some x; y 2 Rþ: Then by Proposition 1 there exist

p; q 2 Rþ such that x = pq, y = qp and u = p(qp)i for some i C 0. If |u| C |x| then i C 1

and since u 2 Ph we have both p; q 2 Ph: Hence w ¼ xu ¼ pðqpÞiþ1 2 Ph: If |u| \ |x|, then

i = 0 and u = p. Since u 2 Ph we have p 2 Ph and w = pqp with p 2 Ph: h

Lemma 24 Let h be an antimorphic involution and let Phþ ¼ Ph n fkg: Then
P2

hþ
\ Phþ ¼ fsiji� 2; s 2 Phþg:

Proof Let x 2 P2
hþ
\ Phþ : Then x = ab with a; b; x 2 Phþ and hence ab = h(b)h(a) = ba

which implies that a = si and b = sj for s 2 Phþ : Thus x = sk for k C 2 and s 2 Phþ and

hence P2
hþ
\ Phþ � fsiji� 2; s 2 Phþg: Conversely, let x = si with i C 2, s 2 Phþ : Then for

a = sm and b = sn, m ? n = i and m, n C 1, we have both a; b 2 Ph and x 2 Phþ : Thus

x 2 P2
hþ
\ Phþ : Thus we have P2

hþ
\ Phþ ¼ fsi; i� 2 : s 2 Phþg: h

Let Q denote the set of all primitive words.

Corollary 6 Let h be an antimorphic involution. Then Ph \ Q ¼ PhnP2
h:

314 L. Kari, K. Mahalingam

123

7 Conclusions

In this paper we gave an overview of the existing approaches to the problem of finding

optimal DNA encodings for biocomputations and focussed on the study, from an algebraic

perspective, of a specific concept: the Watson–Crick palindrome. We obtained several

properties of Watson–Crick palindromes that are relevant from a biocomputational per-

spective, such as the fact that both the set of WK-palindromes and the set of non-WK-

palindromes are dense, and the fact that a WK-palindrome can in general be easily changed

into a non-WK-palindrome by simple operations such as catenation and insertion.

In addition, we obtained some properties that link the WK palindromes to classical

notions such as that of primitive words. For example we showed that, for an antimorphic

involution, the set of h-palindromic words that cannot be written as the product of two

nonempty h-palindromes equals the set of primitive h-palindromes.

Future work includes the study of more complex systems of Watson–Crick equations,

such as the ones studied in this paper and that resulted in WK-palindromic solutions, as

well as the investigation of other extensions of classical notions in combinatorics of words

such as a generalized notion of h-primitivity.

Acknowledgements Research supported by Natural Sciences and Engineering Research Council of
Canada Discovery Grant and Canada Research Chair Award for Lila Kari.

References

Adleman L (2000) Towards a mathematical theory of self-assembly. Technical Report 00-722, Department
of Computer Science, University of Southern California

Daley M, McQuillan I (2006) On computational properties of template-guided DNA recombination. In:
Carbone A, Pierce N (eds) Proceedings of the DNA computing 11. LNCS, vol 3892. Springer, Berlin,
pp 27–37

de Luca A (2006) Pseudopalindrome closure operators in free monoids. Theor Comput Sci 362:282–300
Domaratzki M (2006) Hairpin structures defined by DNA trajectories. In: Mao C, Yokomori T (eds)

Proceedings of the DNA computing 12. LNCS, vol 4287. Springer, Berlin, pp 182–194
Feldkamp U, Banzhaf W, Rauhe H (2000) A DNA sequence compiler. In: Condon A, Rozenberg G (eds)

Pre-proceedings of the DNA-based computers 6. Leiden, Netherlands
Feldkamp U, Saghafi S, Banzhaf W, Rauhe H (2001) DNA sequence generator: a program for the con-

struction of DNA sequences. In: Jonoska N, Seeman N (eds) Proceedings of the DNA-based computers
7. LNCS, vol 2340. Springeer, Berlin, pp 23–32

Garzon MH, Oehman C (2001) Biomolecular computation in virtual test tubes. In: Jonoska N, Seeman N
(eds) Proceedings of the DNA-based computers 7. LNCS, vol 2340. Springer, Berlin, pp 117–128

Garzon M, Phan V, Roy S, Neel A (2006) In search of optimal codes for DNA computing. In: Mao C,
Yokomori T (eds) Proceedings of the DNA computing 12. LNCS, vol 4287. Springer, Berlin, 143–156

Hartemik J, Gifford DK, Khodor J (1999) Automated constaint-based nucleotide sequence selection for
DNA computation. In: Kari L, Rubin H, Wood D (eds) Proceedings of the DNA based computers 4.
Biosystems 52(1–3):227–235

Hartemink J, Gifford DK (1999) Thermodynamic simulation of deoxyoligonucleotide hybridization for
DNA computation. In: Rubin H, Wood D (eds) Proceedings of the DNA-based computers 3. DIMACS
series in discrete mathematics and theoretical computer science. AMS Press, Providence, pp 25–38

Hopcroft J, Ullman J, Motwani R (2001) Introduction to automata theory, languages and computation, 2nd
edn. Addison Wesley, Boston

Hussini S, Kari L, Konstantinidis S (2003) Coding properties of DNA languages. Theor Comput Sci
290:1557–1579

Jonoska N, Mahalingam K, Chen J (2005) Involution codes: with application to DNA coded languages. Nat
Comput 4(2):141–162

Jonoska N, Kari L, Mahalingam K (2006) Involution solid and join codes. In: Ibarra O, Dang Z (eds)
Developments in language theory: 10th international conference. LNCS, vol 4036. Springer, Berlin, pp
192–202

Watson–Crick palindromes in DNA computing 315

123

Kari L, Mahalingam K (2007a) Involutively bordered words. Int J Found Comput Sci 18:1089–1106
Kari L, Mahalingam K (2007b) Watson–Crick conjugate and commutative words. In: Garzon M, Yan H

(eds) Preproceedings of the DNA computing 13. Springer, Berlin, pp 75–87
Kari L, Mahalingam K (2007c) Watson–Crick bordered words and their syntactic monoid. In: Domaratzki

M, Salomaa K (eds) International workshop on language theory in biocomputing, Kingston, Canada,
pp 64–75

Kari L, Konstantinidis S, Losseva E, Wozniak G (2003) Sticky-free and overhang-free DNA languages.
Acta Inf 40:119–157

Kari L, Konstantinidis S, Losseva E, Sosik P, Thierrin G (2005a) Hairpin structures in DNA words. In:
Carbone A, Pierce N (eds) Proceedings of the DNA computing 11. LNCS, vol 3892. Springer, Berlin,
pp 158–170

Kari L, Konstantinidis S, Sosik P (2005b) Bond-free languages: formalizations, maximality and construction
methods. Int J Found Comput Sci 16: 1039–1070

Kari L, Mahalingam K, Thierrin G (2007) The syntactic monoid of hairpin-free languages. Acta Inf
44(3):153–166

Kari L, Mahalingam K, Seki S (2009) Twin-roots of words and their properties. Theor Comput Sci 410
(24–25):2393–2400

Lothaire M (1997) Combinatorics of words. Cambridge University Press, Cambridge
Lyndon RC, Schutzenberger MP (1962) On the equation aM = bNcp in a free group. Mich Math J 9:289–298
Marathe A, Condon A, Corn R (1999) On combinatorial DNA word design. In: Winfree E, Gifford D (eds)

Proceedings of the DNA based computers 5. DIMACS series in discrete mathematics and theoretical
computer science. AMS Press, Providence, pp 75–89

Shyr HJ (2001) Free monoids and languages. Hon Min Book Company, Taiwan
Soloveichik D, Winfree E (2006) Complexity of compact proofreading for self-assembled patterns. In:

Carbone A, Pierce N (eds) Proceedings of the DNA computing 11. LNCS, vol 3892. Springer, Berlin,
pp 305–324

Tulpan D, Hoos H, Condon A (2003) Stochastic local search algorithms for DNA word design. In: Hagiya
M, Ohuchi A (eds) Proceedings of the DNA-based computers 8. LNCS, vol 2568. Springer, Berlin, pp
229–241

Yu SS (1998) d-minimal languages. Discret Appl Math 89:243–262
Yu SS (2005) Languages and codes. Lecture notes. Department of Computer Science, National Chung-

Hsing University, Taichung

316 L. Kari, K. Mahalingam

123

	Watson--Crick palindromes in DNA computing
	Abstract
	Introduction
	DNA encodings for biocomputation
	Watson--Crick palindromes
	Classification of the set of Watson--Crick palindromes
	Simultaneous Watson--Crick conjugate equations
	Properties of Watson--Crick palindromes
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

